Phase synchrony among neuronal oscillations in the human cortex.
نویسندگان
چکیده
Synchronization of neuronal activity, often associated with network oscillations, is thought to provide a means for integrating anatomically distributed processing in the brain. Neuronal processing, however, involves simultaneous oscillations in various frequency bands. The mechanisms involved in the integration of such spectrally distributed processing have remained enigmatic. We demonstrate, using magnetoencephalography, that robust cross-frequency phase synchrony is present in the human cortex among oscillations with frequencies from 3 to 80 Hz. Continuous mental arithmetic tasks demanding the retention and summation of items in the working memory enhanced the cross-frequency phase synchrony among alpha (approximately 10 Hz), beta (approximately 20 Hz), and gamma (approximately 30-40 Hz) oscillations. These tasks also enhanced the "classical" within-frequency synchrony in these frequency bands, but the spatial patterns of alpha, beta, and gamma synchronies were distinct and, furthermore, separate from the patterns of cross-frequency phase synchrony. Interestingly, an increase in task load resulted in an enhancement of phase synchrony that was most prominent between gamma- and alpha-band oscillations. These data indicate that cross-frequency phase synchrony is a salient characteristic of ongoing activity in the human cortex and that it is modulated by cognitive task demands. The enhancement of cross-frequency phase synchrony among functionally and spatially distinct networks during mental arithmetic tasks posits it as a candidate mechanism for the integration of spectrally distributed processing.
منابع مشابه
Nested synchrony—a novel cross-scale interaction among neuronal oscillations
Neuronal interactions form the basis for our brain function, and oscillations and synchrony are the principal candidates for mediating them in the cortical networks. Phase synchrony, where oscillatory neuronal ensembles directly synchronize their phases, enables precise integration between separated brain regions. However, it is unclear how neuronal interactions are dynamically coordinated in s...
متن کاملInducing Gamma Oscillations and Precise Spike Synchrony by Operant Conditioning via Brain-Machine Interface
Neural oscillations in the low-gamma range (30-50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a ...
متن کاملAnother neural code?
This paper presents the conjecture that functional integration may be mediated by the mutual induction and maintenance of stereotyped spatiotemporal patterns of activity (i.e., transients) in different neuronal populations. In contradistinction to temporal and rate coding models of neuronal interactions, transient coding considers that transactions among neuronal systems use transient dynamics ...
متن کاملNeuronal synchrony during anesthesia: a thalamocortical model.
There is growing evidence in favor of the temporal-coding hypothesis that temporal correlation of neuronal discharges may serve to bind distributed neuronal activity into unique representations and, in particular, that theta (3.5-7.5 Hz) and delta (0.5 < 3.5 Hz) oscillations facilitate information coding. The theta- and delta-rhythms are shown to be involved in various sleep stages, and during ...
متن کاملNeural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.
Neural oscillations are rhythmic fluctuations over time in the activity or excitability of single neurons, local neuronal populations or "assemblies," and/or multiple regionally distributed neuronal assemblies. Synchronized oscillations among large numbers of neurons are evident in electrocorticographic, electroencephalographic, magnetoencephalographic, and local field potential recordings and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 15 شماره
صفحات -
تاریخ انتشار 2005